Note

THERMAL BEHAVIOUR OF THE THIURAMDISULPHIDE COMPLEX OF THORIUM(IV) NITRATE

A.K. SRIVASTAVA

Chemistry Department, Meerut College, Meerut 250006 (India)

R.K. AGARWAL *

Chemistry Department, L.R. College, Sahibabad - 201005 (India) (Received 22 March 1983)

Thiuram sulphides are well-known rubber vulcanisation accelerators. A number of papers [1-3] have been published in recent years on the coordination compounds of thiurams with transition metals. Thorium(IV) complexes of sulphur-donor ligands are relatively very rare; to our knowledge, only one complex of thorium(IV) of dithiocarbamate has been reported [4]. In the present note, isolation, characterisation and thermal behaviour of the thorium(IV) complex of tetramethylthiuramdisulphide (TMTDS) is reported.

Elemental analyses of the white complex agree well with the formula $Th(NO_3)_4 \cdot C_6H_{12}N_2S_4$. The conductivity measurements in acetonitrile indicate the typical behaviour of a non-electrolyte. As expected [5], the complex is diamagnetic.

The assignments of infrared spectral bands were made by comparison with previously reported thiuram complexes [1,3]. The thiuram complexes show four important bands in the 1500-800 cm⁻¹ region [1]; (a) a strong band at about 1500 cm⁻¹, called the "thiureide band", (b) a band located at about 1280-1240 cm⁻¹ due to C-N vibration of the alkyl group, (c) a weak band at about 1000-970 cm⁻¹ which corresponds to the C=S stretching mode, and (d) a weak band at 860-820 cm⁻¹ due to the C-S stretching mode. In the complex Th(NO₃)₄ · C₆H₁₂N₂S₄, bands are observed at 1510, 1250 and 970 cm⁻¹ which have been assigned to (a), (b) and (c), respectively. The corresponding bands in the free ligand are at 1495, 1240, and 960 cm⁻¹. The band observed at about 860 cm⁻¹ (due to C-S stretching) in the free ligand, does not appear in the complex. The presence of a bicovalent nitrate group in the complex is indicated by the appearance of bands at 1495 (ν_4), 1290 (ν_1), 1030 (ν_2), 810 (ν_6) and 730 cm⁻¹ (ν_3/ν_5) [6-8]. The Th-S stretching band is observed at 350 and 340 cm⁻¹ [4]. The overall infrared

^{*} To whom correspondence should be addressed.

IABLE I	TA	BL	Æ	1
---------	----	----	---	---

Complex	Decomp. temp. (°C)		Decomp. product	Wt. loss (%)	
	Initial	Final		Found	Calcd.
Th(NO ₃) ₄					
$C_6H_{12}N_2S_4$	130	155	$Th(NO_3)_4 \cdot C_6 H_{12} N_2 S_3$	5.32	4.44
	230	310	$Th(NO_3)_4 \cdot C_5 H_{12} N_2 S$	16.32	15.00
	410	570	ThS ₂	60.10	58.88

Thermal decomposition (TG) data for the Th(NO₃)₄ · TMTDS complex

spectral evidence suggests that TMTDS acts as a bidentate, S-S chelating agent forming a seven-membered ring with Th(IV). Hence, the coordination number of Th(IV) in this complex is likely to be ten.

The results of thermogravimetric analyses of the $Th(NO_3)_4 \cdot TMTDS$ complex are summarised in Table 1.

The changes can be illustrated by

EXPERIMENTAL

A mixture of Th(NO₃)₄ solution (0.1 mmole in 50 ml acetone) and TMTDS solution (0.1 mmole in 150 ml acetone) was stirred for 12 h. A white precipitate separated out, which was filtered, washed several times with acetone and ether and dried in vacuo. The yield was ca. 60%. The complex Th(NO₃)₄ · C₆H₁₂N₂S₄ required Th, 32.22; C, 10.00; H, 1.66, N, 11.66 and S. 17.77%, and was found to contain Th, 32.69; C, 10.60; H, 1.70; N, 11.93 and S, 18.10%. The physical measurements were made as reported earlier [9].

REFERENCES

- 1 C.F. Barrientos and J.G. Contreras, An. Quim., 75 (1979), 245.
- 2 A.K. Srivastava, R.K. Agarwal, M. Srivastava and P.C. Jain, XX Int. Conf. Coord. Chem., Calcutta, 1979 p. 165.
- 3 A.K. Srivastava, R.K. Agarwal and V. Kapoor, Natl. Acad. Sci. Lett., 4 (1981) 361.
- 4 D. Brown, D.G. Holah and C.E.F. Rickard, J. Chem., Soc. A, (1968) 1149; (1970) 423.
- 5 E.D. Eastman, L. Brewar, L.A. Bromley, P.W. Gilles and N.L. Logfram, J. Am. Chem. Soc., 12 (1950) 4019.
- 6 J.R. Ferraro and A. Walker, J. Chem. Phys., 45 (1966) 550.
- 7 T. Ueki, A. Zalkin and D. Templeton, Acta Crystallogr., 20 (1966) 836.
- 8 R.W. Hester and W.L. Grossman, Inorg. Chem., 5 (1966), 1308.
- 9 R.K. Agarwal, A.K. Srivastava and T.N. Srivastava, Transition Met. Chem., 5 (1980) 95.